<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
handle: 20.500.14243/281592 , 11584/97155 , 11585/110807
Nanoscale modification of natural cotton fibres with conformal coatings of gold nanoparticles, deposition of thin layers of the conductive polymer poly(3,4-ethylenedioxithiophene) (PEDOT) and a combination of these two processes were employed to increase conductivity of plain cotton yarns. This innovative approach was especially designed to fabricate two classes of devices: passive devices such as resistors obtained from electrically conductive cotton yarns, and two types of active devices, namely organic electrochemical transistors (OECTs) and organic field effect transistors (OFETs). The detailed electrical and mechanical analysis we performed on treated cotton yarns revealed that they can be used as conductors still maintaining a good flexibility. This study opens an avenue for real integration between organic electronics and traditional textile technology and materials. (C) 2011 Elsevier B. V. All rights reserved.
Conductive fibres, OECT, organic electronics; cotton fibers; smart textiles; conducting polymers, OFET, E-textiles, [SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics, Cotton fibres
Conductive fibres, OECT, organic electronics; cotton fibers; smart textiles; conducting polymers, OFET, E-textiles, [SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics, Cotton fibres
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 95 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |