Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ LAReferencia - Red F...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
CONICET Digital
Article . 2015
License: CC BY NC SA
Data sources: CONICET Digital
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Optics Communications
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 4 versions
addClaim

Digital holographic microscopy for microalgae biovolume assessment

Authors: Monaldi, Andrea Carolina; Romero, Gladis Graciela; Alanis, Elvio; Cabrera de la Rosa, Carlos Matias;

Digital holographic microscopy for microalgae biovolume assessment

Abstract

Abstract The relative amount of biomass in a body of water is one of the various indicators widely used in water quality evaluation. This implies complex tasks such as identification and characterization of microorganisms and measurement of their biovolume. Particularly, the latter is estimated by assuming simple geometrical shapes for the microorganism and by calculating its dimensions from images taken with a conventional microscope. In order to have a more precise and automatic method for biovolume evaluation, a hybrid methodology based on digital holographic microscopy and image processing is proposed. The whole volume of a specimen under study is obtained combining the phase contrast image of an off-axis hologram with the thickness-profile data of the specimen extracted from the cell silhouette. This technique has been used for determining the biovolume of Ceratium Hirundinella cells in water samples. The methodology proposed also shows that it is possible to estimate accurately an effective refractive index of the microorganism. Experimental results have shown that this technique is not only an efficient and fast alternative, but also suitable for automatizing the entire process.

Country
Argentina
Keywords

Image Processing, Hirundinella, Biovolume, Phytoplankton Refractive Index, Ceratium, Digital Holographic Microscopy, https://purl.org/becyt/ford/1.3, Microalgae, https://purl.org/becyt/ford/1

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Average
Green