
Nucleic acid-based aptamers are considered to be a promising alternative to antibodies because of their strong and specific binding to diverse targets, fast and inexpensive chemical synthesis, and easy labeling with a fluorescent dye or therapeutic agent. Cluster of differentiation (CD) proteins are among the most popular antigens for aptamers on the cell surface. These anti-CD aptamers could be used in cell biology and biomedicine, from simple cell phenotyping by flow cytometry or fluorescent microscopy to diagnosis and treatment of HIV/AIDS to cancer and immune therapies. The unique feature of aptamers is that they can act simultaneously as an agonist and antagonist of CD receptors depending on a degree of aptamer oligomerization. Aptamers can also deliver small interfering RNA to silence vital genes in CD-positive cells. In this review, we summarize nucleic acid sequences of anti-CD aptamers and their use, which have been validated in multiple studies.
Therapeutics. Pharmacology, RM1-950, Review
Therapeutics. Pharmacology, RM1-950, Review
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 33 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
