
This paper concerns optimization and equilibrium problems with the so-called equilibrium constraints mathematical programs with equilibrium constraint (MPEC) and equilibrium problems with equilibrium constraint (EPEC), which frequently appear in applications to operations research. These classes of problems can be naturally unified in the framework of multiobjective optimization with constraints governed by parametric variational systems (generalized equations, variational inequalities, complementarity problems, etc.). We focus on necessary conditions for optimal solutions to MPECs and EPECs under general assumptions in finite-dimensional spaces. Since such problems are intrinsically nonsmooth, we use advanced tools of generalized differentiation to study optimal solutions by methods of modern variational analysis. The general results obtained are concretized for special classes of MPECs and EPECs important in applications.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 18 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
