
Parallel MRI started with the introduction of coil arrays in improving radiofrequency (RF) acquisition (what is called parallel imaging) and continued with an analogous development for RF transmission (parallel transmission). Based on differences in the spatial sensitivity distributions of the involved array elements, both techniques try to shorten the respective k-space trajectory. Parallel imaging refers to the acquisition of k-space data, whereas parallel transmission is dealing with the deposition of RF energy packages in the excitation k-space. However, parallel transmission is not simply the reciprocal of parallel imaging. The main goal of parallel imaging is the shortening of the acquisition time. The main goal of parallel transmission is the shortening of the pulse duration of spatially selective RF pulses. The present article describes the basic concept, the state of the art, and the similarities and differences of both technologies.
Animals, Humans, Magnetic Resonance Imaging
Animals, Humans, Magnetic Resonance Imaging
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 16 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
