
The study of systems as diverse as the cores of neutron stars and heavy-ion collision experiments requires the understanding of the phase structure of QCD at non-zero temperature, T, and chemical potential, mu_q. We review some of the difficulties of performing lattice simulations of QCD with non-zero mu_q, and outline the re-weighting method used to overcome this problem. This method is used to determine the critical endpoint of QCD in the (mu_q,T) plane. We study the pressure and quark number susceptibility at small mu_q.
5 pages, talk presented by C.R. Allton at the QCD Downunder Conference, Barossa Valley and Adelaide, March 2004
High Energy Physics - Lattice, High Energy Physics - Lattice (hep-lat), Lattice, FOS: Physical sciences
High Energy Physics - Lattice, High Energy Physics - Lattice (hep-lat), Lattice, FOS: Physical sciences
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
