<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
We develop the diagrammatic technique of quiver subtraction to facilitate the identification and evaluation of the $\mathrm{SU}(n)$ hyper-Kähler quotient (HKQ) of the Coulomb branch of a $3d$ $\mathcal{N}=4$ unitary quiver theory. The target quivers are drawn from a wide range of theories, typically classified as ''good'' or ''ugly'', which satisfy identified selection criteria. Our subtraction procedure uses quotient quivers that are ''bad'', differing thereby from quiver subtractions based on Kraft-Procesi transitions. The procedure identifies one or more resultant quivers, the union of whose Coulomb branches corresponds to the desired HKQ. Examples include quivers whose Coulomb branches are moduli spaces of free fields, closures of nilpotent orbits of classical and exceptional type, and slices in the affine Grassmanian. We calculate the Hilbert Series and Highest Weight Generating functions for HKQ examples of low rank. For certain families of quivers, we are able to conjecture HWGs for arbitrary rank. We examine the commutation relations between quotient quiver subtraction and other diagrammatic techniques, such as Kraft-Procesi transitions, quiver folding, and discrete quotients.
Shorter title
High Energy Physics - Theory, High Energy Physics - Theory (hep-th), Nuclear and particle physics. Atomic energy. Radioactivity, FOS: Physical sciences, QC770-798
High Energy Physics - Theory, High Energy Physics - Theory (hep-th), Nuclear and particle physics. Atomic energy. Radioactivity, FOS: Physical sciences, QC770-798
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |