
We study a set of asymmetric deformations of non-critical superstring theories in various dimensions. The deformations arise as Kaehler and complex structure deformations of an orthogonal two-torus comprising of a parallel and a transverse direction in the near-horizon geometry of NS5-branes. The resulting theories have the following intriguing features: Spacetime supersymmetry is broken in a continuous fashion and the masses of the lightest modes are lifted. In particular, no bulk or localized tachyons are generated in the non-supersymmetric vacua. We discuss the effects of these deformations in the context of the holographic duality between non-critical superstrings and Little String Theories and find solutions of rotating fivebranes in supergravity. We also comment on the generation of a one-loop cosmological constant and determine the effects of the one-loop backreaction to leading order.
lanlmac, 41 pages, 1 figure; v2 an erroneous statement corrected in section 6, version published in NPB
High Energy Physics - Theory, High Energy Physics - Theory (hep-th), FOS: Physical sciences
High Energy Physics - Theory, High Energy Physics - Theory (hep-th), FOS: Physical sciences
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
