Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nuclear Physics Barrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nuclear Physics B
Article . 2004 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nuclear Physics B
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2004
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2003
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

From branes to branes

Authors: Khoze, Valentin V.;

From branes to branes

Abstract

We use the `branes within branes' approach to study the appearance of stable $ (p-2)-branes and unstable (p-1)-branes in type II string theory from p-brane--p-antibrane pairs.Our goal is to describe the emergence of these lower dimensional branes from brane-antibrane pairs in string theory using a tractable gauge theory language. This is achieved by suspending the original p-brane--p-antibrane pair between two (p+2)-branes, and describing its dynamics in terms of the worldvolume gauge theory on the spectator (p+2)-branes. Instantons, monopoles, sphalerons and their higher-dimensional generalizations in this worldvolume gauge theory correspond to stable (BPS) and unstable (non-BPS) branes in string theory. Collisions of stable branes with corresponding antibranes and production of lower-dimensional branes in string theory are described in a straightforward way in gauge theory. Tachyonic modes on the p-brane--p-antibrane worldvolume do not appear in our analysis since we work on the worldvolume of the spectator (p+2)-branes. Our results on brane descent relations are in agreement with Sen's tachyon condensation approach.

30 pages, 12 figures, references added

Related Organizations
Keywords

High Energy Physics - Theory, type II string theory, High Energy Physics - Theory (hep-th), brane collisions, FOS: Physical sciences, String and superstring theories; other extended objects (e.g., branes) in quantum field theory, wordvolume gauge theory, Yang-Mills and other gauge theories in quantum field theory

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green
gold
Funded by
Related to Research communities