<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
It is recently discovered that at high multiplicy, the proton-nucleus ($pA$) collisions give rise to two particle correlations that are strikingly similar to those of nucleus-nucleus ($AA$) collisions at the same multiplicity, although the system size is smaller in $pA$. Using an independent cluster model and a simple conformal scaling argument, where the ratio of the mean free path to the system size stays constant at fixed multiplicity, we argue that flow in $pA$ emerges as a collective response to the fluctuations in the position of clusters, just like in $AA$ collisions. With several physically motivated and parameter free rescalings of the recent LHC data, we show that this simple model captures the essential physics of elliptic and triangular flow in $pA$ collisions.
4 pages, 2 figures, proceedings for Quark Matter XXIV, May 19-24 2014, Darmstadt
Nuclear Theory (nucl-th), High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), Nuclear Theory, FOS: Physical sciences
Nuclear Theory (nucl-th), High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), Nuclear Theory, FOS: Physical sciences
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |