
pmid: 24183020
The constant dynamic movement of synapses and their components has emerged in the last decades as a key feature of synaptic transmission and its plasticity. Intramolecular protein movements drive conformation changes important to transduce transmitter binding into signaling. Constant cytoskeletal rearrangements power synapse shape movements. Vesicular trafficking at the pre- and postsynapse underlies transmitter release and receptor traffic between the cell surface and intracellular compartments, respectively. Receptor movement in the plane of the plasma membrane by thermally powered Brownian diffusion movement and reversible trapping by receptor-scaffold interactions has emerged as the main mechanism to dynamically organize the synaptic membrane in nanoscale domains. We will discuss here the different conceptual and methodological advances that have led to a rethinking of the synapse as an organelle whose function is tightly linked to its dynamic organization.
Neurons, Nonlinear Dynamics, Neuroscience(all), Models, Neurological, Synapses, Animals
Neurons, Nonlinear Dynamics, Neuroscience(all), Models, Neurological, Synapses, Animals
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 448 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
