Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
CONICET Digital
Article . 2018
License: CC BY NC SA
Data sources: CONICET Digital
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
NeuroToxicology
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DIGITAL.CSIC
Article . 2019 . Peer-reviewed
Data sources: DIGITAL.CSIC
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Neurotransmitter amines and antioxidant agents in neuronal protection against methylmercury-induced cytotoxicity in primary cultures of mice cortical neurons

Authors: Nair Olguín; Marie-Lena Müller; Eduard Rodríguez-Farré; Cristina Suñol;

Neurotransmitter amines and antioxidant agents in neuronal protection against methylmercury-induced cytotoxicity in primary cultures of mice cortical neurons

Abstract

Methylmercury (MeHg) is an environmental toxicant with detrimental effects on the developing brain and adult nervous system. The main mechanisms identified include oxidative stress, changes in intracellular calcium, mitochondrial changes, inhibition of glutamate uptake, of protein synthesis and disruption of microtubules. However, little is known about mechanisms of protection against MeHg neurotoxicity. We found that resveratrol (10 μM) and ascorbic acid (200 μM) protected MeHg-induced cell death in primary cultures of cortical neurons. In this work, we aimed at finding additional targets that may be related to MeHg mode of action in cell toxicity with special emphasis in cell protection. We wonder whether neurotransmitters may affect the MeHg effects on neuronal death. Our findings show that neurons exposed to low MeHg concentrations exhibit less mortality if co-exposed to 10 μM dopamine (DA). However, DA metabolites, HVA (homovanillic acid) and DOPAC (3,4-dihydroxyphenylacetic acid) are not responsible for such protection. Furthermore, both DA D1 and D2 receptors agonists showed a protective effect against MeHg toxicity. It is striking though that DA receptor antagonists SKF83566 (10 μM) and haloperidol (10 μM) did not inhibit DA protection against MeHg. In addition, the protective effect of 10 μM DA against MeHg-induced toxicity was not affected by additional organochlorine pollutants exposure. Our results also demonstrate that cells exposed to MeHg in presence of 100 μM acetylcholine (ACh), show an increase in cell mortality at the "threshold value" of 100 nM MeHg. Finally, norepinephrine (10 μM) and serotonin (20 μM) also had an effect on cell protection. Altogether, we propose to further investigate the additional mechanisms that may be playing an important role in MeHg-induced cytotoxicity.

Countries
Argentina, Spain
Keywords

Serotonin, Cell viability, Biogenic Amines, Cell Survival, CULTURED CORTICAL NEURONS, Dopamine, METHYLMERCURY NEUROTOXICITY, Antioxidants, DOPAMINE, Methylmercury neurotoxicity, Mice, ANTIOXIDANTS, https://purl.org/becyt/ford/3.3, Pregnancy, Animals, https://purl.org/becyt/ford/3, Cultured cortical neurons, Cells, Cultured, Cerebral Cortex, Neurons, NEUROPROTECTION, Neurotransmitter Agents, Dose-Response Relationship, Drug, Cytotoxins, SEROTONIN, Methylmercury Compounds, CELL VIABILITY, Neuroprotection, Oxidative Stress, Female

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 17
    download downloads 12
  • 17
    views
    12
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
12
Top 10%
Average
Top 10%
17
12
Green