Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Neural Networksarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neural Networks
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Robust image classification against adversarial attacks using elastic similarity measures between edge count sequences

Authors: Izaskun Oregi; Javier Del Ser; Aritz Pérez; José A. Lozano;

Robust image classification against adversarial attacks using elastic similarity measures between edge count sequences

Abstract

Due to their unprecedented capacity to learn patterns from raw data, deep neural networks have become the de facto modeling choice to address complex machine learning tasks. However, recent works have emphasized the vulnerability of deep neural networks when being fed with intelligently manipulated adversarial data instances tailored to confuse the model. In order to overcome this issue, a major effort has been made to find methods capable of making deep learning models robust against adversarial inputs. This work presents a new perspective for improving the robustness of deep neural networks in image classification. In computer vision scenarios, adversarial images are crafted by manipulating legitimate inputs so that the target classifier is eventually fooled, but the manipulation is not visually distinguishable by an external observer. The reason for the imperceptibility of the attack is that the human visual system fails to detect minor variations in color space, but excels at detecting anomalies in geometric shapes. We capitalize on this fact by extracting color gradient features from input images at multiple sensitivity levels to detect possible manipulations. We resort to a deep neural classifier to predict the category of unseen images, whereas a discrimination model analyzes the extracted color gradient features with time series techniques to determine the legitimacy of input images. The performance of our method is assessed over experiments comprising state-of-the-art techniques for crafting adversarial attacks. Results corroborate the increased robustness of the classifier when using our discrimination module, yielding drastically reduced success rates of adversarial attacks that operate on the whole image rather than on localized regions or around the existing shapes of the image. Future research is outlined towards improving the detection accuracy of the proposed method for more general attack strategies.

Keywords

Deep Learning, Image Processing, Computer-Assisted, Color, Pattern Recognition, Automated

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!