Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio Istituziona...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neural Networks
Article . 2011 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mathematical analysis of the Accordion Grating illusion: A differential geometry approach to introduce the 3D aperture problem

Authors: Yazdanbakhsh, Arash; GORI, Simone;

Mathematical analysis of the Accordion Grating illusion: A differential geometry approach to introduce the 3D aperture problem

Abstract

When an observer moves towards a square-wave grating display, a non-rigid distortion of the pattern occurs in which the stripes bulge and expand perpendicularly to their orientation; these effects reverse when the observer moves away. Such distortions present a new problem beyond the classical aperture problem faced by visual motion detectors, one we describe as a 3D aperture problem as it incorporates depth signals. We applied differential geometry to obtain a closed form solution to characterize the fluid distortion of the stripes. Our solution replicates the perceptual distortions and enabled us to design a nulling experiment to distinguish our 3D aperture solution from other candidate mechanisms (see Gori et al. (in this issue)). We suggest that our approach may generalize to other motion illusions visible in 2D displays.

Country
Italy
Related Organizations
Keywords

Depth Perception, Optics and Photonics, Biophysics, Motion Perception, Models, Theoretical, Illusions, Retina, Imaging, Three-Dimensional, Accordion Grating; Aperture problem; Differential geometry; Line of sight; Motion; Projection line; Visual illusion, Humans, Visual Fields, Ocular Physiological Phenomena, Photic Stimulation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Average
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?