Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Neural Networksarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neural Networks
Article . 2011 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Multiscale interactions between chemical and electric signaling in LTP induction, LTP reversal and dendritic excitability

Authors: Upinder S. Bhalla;

Multiscale interactions between chemical and electric signaling in LTP induction, LTP reversal and dendritic excitability

Abstract

Synaptic plasticity leads to long-term changes in excitability, whereas cellular homeostasis maintains excitability. Both these processes involve interactions between molecular events, electrical events, and network activity. Here I explore these intersections with a multilevel model that embeds molecular events following synaptic calcium influx into a multicompartmental electrical model of a CA1 hippocampal neuron. I model synaptic plasticity using a two-state (bistable) molecular switch that controls glutamate receptor insertion into the post-synaptic density. I also model dendritic activation of the MAPK signaling pathway, which in turn phosphorylates and inactivates A-type potassium channels. I find that LTP-inducing stimuli turn on individual spines and raise dendritic excitability. This increases the amount of calcium that enters due to synaptic input triggered by network activity. As a result, LTD is now induced in some synapses. Overall, this suggests a mechanism for cellular homeostasis where strengthening of some synapses eventually balances out through weakening of a possibly overlapping set of other synapses. Even in this very narrow slice of cellular events, interesting system properties arise at the interface between multiple scales of cellular function.

Keywords

Neurotransmitter Agents, Neuronal Plasticity, Potassium Channels, Long-Term Potentiation, Models, Neurological, Post-Synaptic Density, Dendrites, Electrophysiological Phenomena, Synapses, Computer Simulation, Calcium Signaling, Receptors, AMPA, Mitogen-Activated Protein Kinases, CA1 Region, Hippocampal, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Average
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!