Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Neuroscience Lettersarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neuroscience Letters
Article . 2006 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Autoantibodies that recognize functional domains of hnRNPA1 implicate molecular mimicry in the pathogenesis of neurological disease

Authors: Sang Min, Lee; Floyd D, Dunnavant; Haeman, Jang; Joseph, Zunt; Michael C, Levin;

Autoantibodies that recognize functional domains of hnRNPA1 implicate molecular mimicry in the pathogenesis of neurological disease

Abstract

As a model for molecular mimicry in neurological disease, we study people infected with human T-lymphotropic virus type 1 (HTLV-1) who develop HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP), an immune-mediated disease of the central nervous system (CNS). In HAM/TSP, data suggests molecular mimicry is the result of cross-reactive antibodies between HTLV-1-tax and heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1), a protein over-expressed in human CNS neurons. The hnRNP A1 epitope recognized by autoantibodies was unknown. In this study, we hypothesized that antibodies purified from HAM/TSP patients would react with functionally significant domains of hnRNP A1. Western blotting of functionally significant deletion mutants and overlapping fusion proteins using HAM/TSP IgG revealed two core epitopes within the C-terminal region of hnRNP A1. The first (aminoacids 191-SSQRGRSGSGNF-202), overlapped the RGG domain and the second (aminoacids 293-GQYFAKPRNQGG-304), with the M9 shuttling sequence, two functionally important regions of hnRNP A1. Monoclonal antibodies to HTLV-1-tax also reacted with the epitopes. These data fulfill an important criterion of molecular mimicry, namely that mimicking epitopes are not random, but include biologically significant regions of target proteins. This suggests an important role for the cross-reactive immune response between HTLV-1 and hnRNP A1 in the pathogenesis of immune-mediated neurological diseases via molecular mimicry.

Keywords

Neurons, Heterogeneous Nuclear Ribonucleoprotein A1, Recombinant Fusion Proteins, Molecular Mimicry, Cross Reactions, HTLV-I Infections, Paraparesis, Tropical Spastic, Protein Structure, Tertiary, Epitopes, Spinal Cord, Immunoglobulin G, Heterogeneous-Nuclear Ribonucleoprotein Group A-B, Mutation, Humans, Autoantibodies

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    31
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
31
Top 10%
Top 10%
Top 10%
bronze