Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Neurocomputingarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neurocomputing
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Multiple populations co-evolutionary particle swarm optimization for multi-objective cardinality constrained portfolio optimization problem

Authors: Zhao, Hong; Chen, Zong-Gan; Zhan, Zhi-Hui; Kwong, Sam; Zhang, Jun;

Multiple populations co-evolutionary particle swarm optimization for multi-objective cardinality constrained portfolio optimization problem

Abstract

Abstract With the rapid development of financial market, a growing number of stocks become available on the financial market. How to efficiently select these stocks to achieve higher return and lower risk has become a hot research topic in financial management. This is usually called the portfolio optimization problem (POP). When the cardinality constrained (CC) is added to limit the number of selected stocks to a certain value, the resulting CCPOP is more challenging with the following two difficulties: i) Due to the complexity of CC in finical market, how to efficiently deal with CC in POP to obtain feasible solution is difficult and time-consuming. ii) The objectives of portfolio return and risk always conflict with each other and their relation is difficult to balance. To better deal with above difficulties, this paper focuses on the multi-objective CCPOP (MoCCPOP) and proposes a multiple populations co-evolutionary particle swarm optimization (MPCoPSO) algorithm, which is based on multiple populations for multiple objectives (MPMO) framework and has the following four advantages. Firstly, a hybrid binary and real (HBR) encoding strategy is introduced to better represent the stock selection and the asset weight of the solutions in MoCCPOP. Secondly, a return risk ratio heuristic (R3H) strategy based on the historical return and risk of each stock is proposed as a fast CC handling method to obtain feasible solutions. Thirdly, a new particle update method based on bi-directional local search (BLS) strategy is designed to increase the chance to improve the solution accuracy and to approach the global Pareto front (PF). Last but not least, a hybrid elite competition (HEC) strategy is proposed to assist the archive update, which provides more promising solutions and brings diversity to avoid local PF. The first two strategies help to efficiently deal with the CC challenge, while the last two strategies are efficient in solving the multi-objective challenge. By comparing with some recent well-performing and state-of-the-art multi-objective optimization algorithms, MPCoPSO shows the superior performance in solving the MoCCPOP.

Related Organizations
Keywords

computing, algorithm, 4602 Artificial intelligence, optimisation, Institute for Sustainable Industries and Liveable Cities, financial market, artificial intelligence, 540, particle swarm optimisation, 510

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    58
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
58
Top 1%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!