Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Neurocomputingarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neurocomputing
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Robust multi-view data clustering with multi-view capped-norm K-means

Authors: Shudong Huang; Yazhou Ren; Zenglin Xu;

Robust multi-view data clustering with multi-view capped-norm K-means

Abstract

Abstract Real-world data sets are often comprised of multiple representations or views which provide different and complementary aspects of information. Multi-view clustering is an important approach to analyze multi-view data in a unsupervised way. Previous studies have shown that better clustering accuracy can be achieved using integrated information from all the views rather than just relying on each view individually. That is, the hidden patterns in data can be better explored by discovering the common latent structure shared by multiple views. However, traditional multi-view clustering methods are usually sensitive to noises and outliers, which greatly impair the clustering performance in practical problems. Furthermore, existing multi-view clustering methods, e.g. graph-based methods, are with high computational complexity due to the kernel/affinity matrix construction or the eigendecomposition. To address these problems, we propose a novel robust multi-view clustering method to integrate heterogeneous representations of data. To make our method robust to the noises and outliers, especially the extreme data outliers, we utilize the capped-norm loss as the objective. The proposed method is of low complexity, and in the same level as the classic K-means algorithm, which is a major advantage for unsupervised learning. We derive a new efficient optimization algorithm to solve the multi-view clustering problem. Finally, extensive experiments on benchmark data sets show that our proposed method consistently outperforms the state-of-the-art clustering methods.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    69
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
69
Top 1%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!