
Evacuation time estimation (ETE) is crucial for the effective implementation of resident protection measures as well as planning, owing to its applicability to nuclear emergencies. However, as confirmed in the Fukushima case, the ETE performed by nuclear operators does not reflect behavioral features, exposing thus, gaps that are likely to appear in real-world situations. Existing research methods including surveys and interviews have limitations in extracting highly feasible behavioral features. To overcome these limitations, we propose a VR-based immersive experiment system. The VR system realistically simulates nuclear emergencies by structuring existing disasters and human decision processes in response to the disasters. Evacuation behavioral features were quantitatively extracted through the proposed experiment system, and this system was systematically verified by statistical analysis and a comparative study of experimental results based on previous research. In addition, as part of future work, an application method that can simulate multi-level evacuation dynamics was proposed. The proposed experiment system is significant in presenting an innovative methodology for quantitatively extracting human behavioral features that have not been comprehensively studied in evacuation. It is expected that more realistic evacuation behavioral features can be collected through additional experiments and studies of various evacuation factors in the future.
Human-in-the-loop experiment system, VR, Evacuation behavioral features, TK9001-9401, Nuclear emergency, 006, Pre-evacuation, Agent-based modeling and simulation, Nuclear engineering. Atomic power
Human-in-the-loop experiment system, VR, Evacuation behavioral features, TK9001-9401, Nuclear emergency, 006, Pre-evacuation, Agent-based modeling and simulation, Nuclear engineering. Atomic power
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
