Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Materials Science an...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Materials Science and Engineering B
Article . 2004 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

New DUV resist characterisation: stability to MB SEMI© F21-95 contaminants

Authors: CURRO T; CORDIANO F; FRANCO G; MONDIO, Guglielmo; IPPEDICO G.;

New DUV resist characterisation: stability to MB SEMI© F21-95 contaminants

Abstract

Abstract Airborne molecular contamination (AMC) effects reveal to be more and more prominent in clean room manufacturing areas, shrinking the dimensions of electronic circuits such as the last generation of flash memory devices (0.15–0.13 μm). This work enabled us to evaluate new resist stability to specific airborne contamination class in critical conditions; that is basic contamination of clean room environments (∼20 ppb), higher than a typical contamination status inside Deep UV equipment chambers (∼2 ppb). Formation of the so-called T-Topping (see Fig. 1) was observed, qualitatively discussed and quantitatively measured, facilitating comparison between experimental data on a time scale basis and a theoretical model developed for interpret contaminants adsorption on ultra clean surfaces; then we interpolated critical data between 1 and 5 min to gather information on process material characterization. The starting adsorption shift rate revealed to be 12 nm/min, showing that T-Topping is an almost instantaneous phenomena and that 2 min are sufficient to obtain CD values higher than specification limits in the experimental conditions. Finally, we calculated the resist characterization parameter (max shift rate per ppbV of airborne basis concentration) on a pure theoretical basis (0.637 nm/min/ppbV) resulting in a very good agreement with literature [D. Kinkead, W. Goodwin, K., MICRO 18(9) (2000) 71–84].

Country
Italy
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!