
pmid: 30739833
Immune sensing of exogenous molecules from microbes (e.g., pathogen-associated molecular patterns) and nonmicrobial molecules (e.g., asbestos, alum, and silica), as well as endogenous damage-associated molecular patterns (e.g., ATP, uric acid crystals, and amyloid A) activates innate immunity by inducing immune-related genes, including proinflammatory cytokines, which further facilitate the development of adaptive immunity. The roles of transcriptional responses downstream of immune sensing have been widely characterized in informing adaptive immunity; however, few studies focus on the effect of post-translational responses on the modulation of adaptive immune responses. Inflammasomes activated by the previously described endo- and exogenous stimuli autocatalytically induce intracellular pro-caspase-1, which cleaves the inactive precursors of interleukin-1β (IL-1β) and IL-18 into bioactive proinflammatory cytokines. IL-1β and IL-18 not only contribute to the host defense against infections by activating phagocytes, such as monocytes, macrophages, dendritic cells, and neutrophils, but also induce T-helper 17 (Th17)- and Th1-mediated adaptive immune responses. In synergy with IL-6 and IL-23, IL-1β activates IL-1 receptor (IL-1R) signaling to drive the differentiation of IL-17-producing Th17 cells, which not only play critical roles in host protective immunity to infections of bacteria, fungi, and certain viruses but also participate in the pathology of inflammatory disorders and tumorigenesis. Consequently, targeting inflammasomes and IL-1/IL-1R signaling may effectively improve the treatment of Th17-associated disorders, such as autoinflammatory diseases and cancers, thereby providing novel insights into drug development.
Phagocytes, Inflammasomes, Cell Differentiation, Adaptive Immunity, Th1 Cells, Animals, Cytokines, Humans, Th17 Cells, Signal Transduction
Phagocytes, Inflammasomes, Cell Differentiation, Adaptive Immunity, Th1 Cells, Animals, Cytokines, Humans, Th17 Cells, Signal Transduction
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 83 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
