Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Immunologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Immunology
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A single mouse monoclonal antibody, E58 modulates multiple IgE epitopes on group 1 cedar pollen allergens

Authors: Randall M, Goldblum; Bo, Ning; Barbara M, Judy; Luis Marcelo F, Holthauzen; Julius, van Bavel; Atsushi, Kamijo; Terumi, Midoro-Horiuti;

A single mouse monoclonal antibody, E58 modulates multiple IgE epitopes on group 1 cedar pollen allergens

Abstract

We recently described a dominant role for conformational epitopes on the group 1 allergen of the mountain cedar (Juniperus ashei, Cupressaceae), Jun a 1, in pollen hypersensitivity in South Central U.S.A. Since these epitopes are surface exposed and are likely to be flexible, they may be susceptible to molecular or physical perturbations. This may make Jun a 1 a potential target for new forms of therapy for cedar pollinosis. Here, we describe a mouse monoclonal antibody, termed E58, which binds to the group 1 allergens of the cedar pollens from three highly populated regions of the world (central U.S.A., France and Japan). Upon binding to these allergens, E58 strongly reduces the binding of patient's IgE antibodies to these dominant allergens. This characteristic of E58, and potentially other similar antibodies, suggests an opportunity to develop preventative or therapeutic agents that may inhibit cedar pollen sensitization or prevent their allergic reactions.

Keywords

Antibodies, Monoclonal, Enzyme-Linked Immunosorbent Assay, Allergens, Antigens, Plant, Immunoglobulin E, Surface Plasmon Resonance, Mice, Antibody Specificity, Hypersensitivity, Animals, Epitopes, B-Lymphocyte, Humans, Pollen, Cedrus, Plant Proteins

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Average
bronze