
C-type lectins are calcium-dependent carbohydrate binding proteins, and animal C-type lectins participate in innate immunity and cell-cell interactions. In the fruit fly Drosophila melanogaster, more than 30 genes encode C-type lectin domains. However, functions of Drosophila C-type lectins in innate immunity are not well understood. This study is to investigate whether two Drosophila C-type lectins, CG33532 and CG33533 (designated as DL2 and DL3, respectively), are involved in innate immune responses. Recombinant DL2 and DL3 were expressed and purified. Both DL2 and DL3 agglutinated Gram-negative Escherichia coli in a calcium-dependent manner. Though DL2 and DL3 are predicted to be secreted proteins, they were detected on the surface of Drosophila hemocytes, and recombinant DL2 and DL3 also directly bound to hemocytes. Coating of agarose beads with recombinant DL2 and DL3 enhanced their encapsulation and melanization by Drosophila hemocytes in vitro. However, hemocyte encapsulation was blocked when the lectin-coated beads were pre-incubated with rat polyclonal antibody specific for DL2 or DL3. Our results suggest that DL2 and DL3 may act as pattern recognition receptors to mediate hemocyte encapsulation and melanization by directly recruiting hemocytes to the lectin-coated surface.
Drosophila melanogaster, Hemocytes, Receptors, Pattern Recognition, Escherichia coli, Animals, Drosophila Proteins, Lectins, C-Type, Immunity, Innate, Recombinant Proteins
Drosophila melanogaster, Hemocytes, Receptors, Pattern Recognition, Escherichia coli, Animals, Drosophila Proteins, Lectins, C-Type, Immunity, Innate, Recombinant Proteins
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 134 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
