Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Cellarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Cell
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Cell
Article . 2005
License: Elsevier Non-Commercial
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Cell
Article . 2005 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
Molecular Cell
Article . 2005
versions View all 3 versions
addClaim

Transcriptional Silencing of Nonsense Codon-Containing Immunoglobulin Minigenes

Authors: Bühler, Marc; Mohn, Fabio; Stalder, Lukas; Mühlemann, Oliver;

Transcriptional Silencing of Nonsense Codon-Containing Immunoglobulin Minigenes

Abstract

Cells possess mechanisms to prevent synthesis of potentially deleterious truncated proteins caused by premature translation-termination codons (PTCs). Here, we show that PTCs can induce silencing of transcription of its cognate gene. We demonstrate for immunoglobulin (Ig)-mu minigenes expressed in HeLa cells that this transcriptional silencing is PTC specific and reversible by treatment of the cells with histone deacetylase inhibitors. Furthermore, PTC-containing Ig-mu minigenes are significantly more associated with K9-methylated histone H3 and less associated with acetylated H3 than the PTC-free Ig-mu minigene. This nonsense-mediated transcriptional gene silencing (NMTGS) is also observed with an Ig-gamma minigene, but not with several classic NMD reporter genes, suggesting that NMTGS might be specific for Ig genes. NMTGS represents a nonsense surveillance mechanism by which truncation of a gene's open reading frame (ORF) induces transcriptional silencing through chromatin remodeling. Remarkably, NMTGS is inhibited by overexpression of the putative siRNase 3'hExo, suggesting that siRNA-like molecules are involved in NMTGS.

Country
Switzerland
Related Organizations
Keywords

Exonucleases, Base Sequence, Genes, Immunoglobulin, Transcription, Genetic, Lysine, Immunoglobulins, Cell Biology, Methylation, Histone Deacetylases, Histone Deacetylase Inhibitors, Histones, Codon, Nonsense, Genes, Reporter, Humans, RNA Interference, Gene Silencing, Molecular Biology, Sequence Alignment, HeLa Cells

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    65
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
65
Top 10%
Top 10%
Top 10%
hybrid