Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mechanisms of Develo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mechanisms of Development
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mechanisms of Development
Article . 2013
License: Elsevier Non-Commercial
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Mechanisms of Development
Article . 2013 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 3 versions
addClaim

An eye on eye development

Authors: Sinn, Rebecca; Wittbrodt, Joachim;

An eye on eye development

Abstract

The vertebrate eye is composed of both surface ectodermal and neuroectodermal derivatives that evaginate laterally from an epithelial anlage of the forming diencephalon. The retina is composed of a limited number of neuronal and non-neuronal cell types and is seen as a model for the brain with reduced complexity. The eye develops in a stereotypic manner building on evolutionarily conserved molecular networks. Eye formation is initiated at the onset of gastrulation by the determination of the eye field in the anterior neuroectoderm. Homeobox transcription factors, in particular Six3 are crucially involved in the establishment and maintenance of retinal identity. The eye field expands by proliferation as gastrulation proceeds and is initially confined to a single retinal primordium by the differential activity of specifying transcription factors. This central field is subsequently split in response to secreted factors emanating from the ventral midline. Concomitant with medio-lateral patterning at the onset of neurulation, morphogenesis sets in and laterally evaginates the optic vesicle. Strikingly during this process the neuroectoderm in the eye field transiently loses epithelial features and cells migrate individually. In a second morphogenetic event, the vesicle is transformed into the optic cup, concomitant with onset and progression of retinal differentiation. Accompanying optic cup morphogenesis, neural differentiation is initiated from a retinal signalling centre in a stereotypic and species specific manner by secreted signalling factors. Here we will give an overview of key events during vertebrate eye formation and highlight key players in the respective processes.

Related Organizations
Keywords

Embryology, Neural Plate, Gastrulation, Gene Expression Regulation, Developmental, Cell Differentiation, Retina, Vertebrates, Animals, Eye Proteins, Developmental Biology, Body Patterning, Cell Proliferation, Signal Transduction, Transcription Factors

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    112
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
112
Top 1%
Top 10%
Top 10%
hybrid