
Mitochondrial disease represents a heterogeneous group of genetic disorders that require a variety of diagnostic tests for proper determination. Neuroimaging may play a significant role in diagnosis. The various modalities of nuclear magnetic resonance imaging (MRI) allow for multiple independent detection procedures that can give important anatomical and metabolic clues for diagnosis. The non-invasive nature of neuroimaging also allows for longitudinal studies. To date, no pathonmonic correlation between specific genetic defect and neuroimaging findings have been described. However, certain neuroimaging results can give important clues that a patient may have a mitochondrial disease. Conventional MRI may show deep gray structural abnormalities or stroke-like lesions that do not respect vascular territories. Chemical techniques such as proton magnetic resonance spectroscopy (MRS) may demonstrate high levels of lactate or succinate. When found, these results are suggestive of a mitochondrial disease. MRI and MRS studies may also show non-specific findings such as delayed myelination or non-specific leukodystrophy picture. However, in the context of other biochemical, structural, and clinical findings, even non-specific findings may support further diagnostic testing for potential mitochondrial disease. Once a diagnosis has been established, these non-invasive tools can also aid in following disease progression and evaluate the effects of therapeutic interventions.
Magnetic Resonance Spectroscopy, Mitochondrial Diseases, Mitochondrial Encephalomyopathies, MELAS Syndrome, Humans, Diffuse Cerebral Sclerosis of Schilder, Kearns-Sayre Syndrome, Leigh Disease, Magnetic Resonance Imaging
Magnetic Resonance Spectroscopy, Mitochondrial Diseases, Mitochondrial Encephalomyopathies, MELAS Syndrome, Humans, Diffuse Cerebral Sclerosis of Schilder, Kearns-Sayre Syndrome, Leigh Disease, Magnetic Resonance Imaging
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 218 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
