Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Microprocessors and ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Microprocessors and Microsystems
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A novel BRAM content accessing and processing method based on FPGA configuration bitstream

Authors: J. Gomez-Cornejo; A. Zuloaga; I. Villalta; J. Del Ser; U. Kretzschmar; J. Lazaro;

A novel BRAM content accessing and processing method based on FPGA configuration bitstream

Abstract

This paper presents a new approach to manage data content of memories implemented in FPGAs through the configuration bitstream. The proposed approach is able to read and write the data content from Block RAMs (BRAMs) in FPGA based designs by reading and processing the information stored in the bitstream. Thanks to this method it is possible to extract, load, copy or compare the information of BRAMs without neither resource overhead nor performance penalty in the design. It can also be applied to existing designs without the need of re-synthesizing. Due to its advantages it becomes an interesting tool to carry out several applications, such as error detection and recovery or fault injection. It also opens the doors to the design of cutting-edge applications. The approach has been implemented in a Xilinx ZYNQ System-on-Chip (SoC) device, which combines an FPGA and an ARM9 microprocessor. The access to the configuration bitstream has been performed using the ZYNQs Processor Configuration Access Port (PCAP). Nevertheless, the flow presented in this article can be adapted to devices from other Xilinx families or vendors. The proposed approach has been fully tested and compared with specifically designed memory controllers. The results obtained in the experimental tests confirm that the proposed approach works properly without increasing the resource overhead but at a penalty in terms of processing time.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!