Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Microprocessors and ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Microprocessors and Microsystems
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Methods for reliable estimation of pulse transit time and blood pressure variations using smartphone sensors

Authors: Alair Dias Junior; Srinivasan Murali; Francisco Rincon; David Atienza;

Methods for reliable estimation of pulse transit time and blood pressure variations using smartphone sensors

Abstract

Hypertension is known to affect around one third of adults globally and early diagnosis is essential to reduce the effects of this affliction. Todays Blood Pressure (BP) monitoring cuffs are obtrusive and inconvenient for performing regular measurements, and continuous non-invasive blood pressure devices are too complex and expensive for ambulatory use. Hence, there is a strong need for affordable systems that can measure blood pressure (BP) variations throughout the day as this will allow to monitor, diagnose and follow-up not only patients at risk, but also healthy population in general for early diagnosis. A promising method for arterial BP estimation is to measure the Pulse Transit Time (PTT) and derive pressure values from it. However, current methods for measuring this surrogate marker of BP require complex sensing and analysis circuitry and the related medical devices are expensive and inconvenient for the user. In this paper, we present new methods to estimate PTT reliably and subsequently BP, from the baseline sensors of smartphones. This new approach involves determining PTT by simultaneously measuring the time the blood leaves the heart, by recording the heart sound using the standard microphone of the phone, and the time it reaches the finger, by measuring the pulse wave using the phones camera. We present algorithms that can be executed directly on current smartphones to obtain clean and robust heart sound signals and to extract the pulse wave characteristics. We also present methods to ensure a synchronous capture of the waveforms, which is essential to obtain reliable PTT values with inexpensive sensors. Additionally, we combine Autocorrelation and Fast Fourier Transform (FFT)-based methods for reliably estimating the user heart rate (HR) from his/her heart sounds, and describe how to use the calculate HR to compensate for the camera frame rate variations and to improve the robustness of PTT estimation. Our experiments show that the computational overhead of the proposed processing methods is minimum, which allows real-time feedback to the user, and that the PTT values are fully accurate (beat-to-beat), thereby enabling state-of-the-art smartphones to be used as affordable medical devices.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Top 10%
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!