
The ubiquitous RNA-binding protein, Hfq, has been shown to be required for the fitness and virulence of an increasing number of bacterial pathogens. Mutants lacking Hfq are often sensitive to host defense mechanisms and highly attenuated in animal models, albeit there is considerable variation in both severity and extent of phenotypes. RNomics and deep sequencing (RNA-seq) approaches discovered the small RNA and mRNA targets of Hfq, and indicated that this protein might impact on the expression of up to 20% of all genes in some organisms, including genes of type 3 secretion systems. Hfq also facilitates post-transcriptional cross-talk between the core and variable genome regions of bacterial pathogens, and might help integrate horizontally acquired virulence genes into existing regulatory networks.
RNA, Bacterial, Virulence, Stress, Physiological, Gene Expression Regulation, Bacterial, RNA, Messenger, Host Factor 1 Protein, RNA, Small Interfering, Bacterial Physiological Phenomena
RNA, Bacterial, Virulence, Stress, Physiological, Gene Expression Regulation, Bacterial, RNA, Messenger, Host Factor 1 Protein, RNA, Small Interfering, Bacterial Physiological Phenomena
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 347 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
