Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Medical Hypothesesarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Medical Hypotheses
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

From Warburg effect to Reverse Warburg effect; the new horizons of anti-cancer therapy

Authors: Sonu Benny; T.P. Aneesh; Rohan Mishra; Maneesha K Manojkumar;

From Warburg effect to Reverse Warburg effect; the new horizons of anti-cancer therapy

Abstract

An old ideology of killing the cancer cells by starving them is the underlying concept of the Warburg effect. It is the process of aerobic glycolysis exhibited by the cancer cells irrespective of anaerobic glycolysis or mitochondrial oxidative phosphorylation following by their healthy counterparts. Dr Otto Heinrich Warburg proposed this abnormal metabolic behaviour of tumour cells in 1920. This phenomenon illustrates the metabolic switching in tumour cells from oxidative phosphorylation to aerobic glycolysis triggered by an injury to the mitochondrial respiration. A modernised perspective of the Warburg hypothesis termed the Reverse Warburg effect introduced in 2009, with a two-compartment model describing the metabolic symbiosis between cancer cells and its neighbouring stromal cells or cancer-associated fibroblasts. This theory is elucidating the aerobic glycolysis occurring in cancer-associated fibroblasts which leads to the generation and deposition of the lactate in tumour microenvironment along with its significance. The transportation of lactate to and from the cancer cell and extracellular space is facilitated by the lactate transporters called monocarboxylate transporters. This lactate generated irrespective of the hypoxic or aerobic conditions acts as a primary metabolic fuel for the cancer cells. Besides, it will create a tumour microenvironment that is favouring the progression and metastasis of malignancy through several means. Overall, the lactate produced through this metabolic reprogramming is supporting and worsening the conditions of cancer. The concept of the Reverse Warburg effect proposes a new anti-cancer treatment modality by preventing the generation and transport of lactate through the inhibition of monocarboxylate transporters and in turn, defeating the cancer disease by arresting the cancer cells along with silencing tumour microenvironment.

Related Organizations
Keywords

Monocarboxylic Acid Transporters, Neoplasms, Tumor Microenvironment, Humans, Glycolysis, Oxidative Phosphorylation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    67
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
67
Top 1%
Top 10%
Top 1%
Upload OA version
Are you the author? Do you have the OA version of this publication?