Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Medical Engineering ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Medical Engineering & Physics
Article . 2005 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

Modular transcutaneous functional electrical stimulation system

Authors: Milos R, Popovic; Thierry, Keller;

Modular transcutaneous functional electrical stimulation system

Abstract

A new multipurpose programmable transcutaneous electric stimulator, Compex Motion, was developed to allow users to design various custom-made neuroprostheses, neurological assessment devices, muscle exercise systems, and experimental setups for physiological studies. Compex Motion can generate any arbitrary stimulation sequence, which can be controlled or regulated in real-time using any external sensor or laboratory equipment. Compex Motion originated from the existing Compex 2 electric stimulator, manufactured by a Swiss based company, Compex SA. The Compex Motion stimulator represents a further evolution and expansion of the ETHZ-ParaCare functional electrical stimulation system. This stimulator provides all the advanced functional electrical stimulation (FES) application and control features and can be easily incorporated into any standard rehabilitation program. Compex Motion has successfully been applied as a neuroprosthesis for walking, reaching and grasping in more than 100 stroke and spinal cord injured patients. This system has also been used to strengthen muscles and to investigate muscle properties in able-bodied subjects. Compex Motion is a multipurpose FES system specially designed to promote sharing and exchanging of stimulation protocols, sensors, and user interfaces. To the best of our knowledge an FES system that has similar capabilities does not exist yet.

Keywords

Adult, Male, Movement Disorders, Equipment Design, Electronics, Medical, Systems Integration, User-Computer Interface, Treatment Outcome, Prosthesis Fitting, Therapy, Computer-Assisted, Transcutaneous Electric Nerve Stimulation, Humans, Algorithms, Gait Disorders, Neurologic, Spinal Cord Injuries

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    78
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
78
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!