
pmid: 15541570
The human adrenal cortex is a complex endocrine organ that secretes mineralocorticoids, glucocorticoids and adrenal androgens. These steroids arise from morphologically and biochemically distinct zones of the adrenal gland. Studying secretion of these distinct steroid hormones can make use of cells isolated from the adrenal gland but this requires animal sacrifice and the need for continued isolation for long-term studies. In addition primary cultures of adrenal cells have a limited life-span in culture and the cultured cells are often contaminated by the presence of non-steroidogenic cells. For that reason in vitro cell culture models have several benefits for research on adrenocortical function. Herein we discuss the available adrenocortical cell lines and their uses as model systems for adrenal studies. Focus is placed on the human NCI-H295 and mouse Y-1 adrenal cell lines, which have been used extensively as adrenocortical model systems. These cell lines have proven to be of considerable value in studying the molecular and biochemical mechanisms controlling adrenal steroidogenesis. The current review will discuss the attributes and limitations of the currently available adrenocortical cell lines as models for adrenal studies.
Adrenal Cortex Hormones, Adrenal Cortex, Animals, Humans, Cell Line
Adrenal Cortex Hormones, Adrenal Cortex, Animals, Humans, Cell Line
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 208 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
