Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Materials & Desi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Materials & Design
Article . 2022 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Materials & Design
Article . 2022
Data sources: DOAJ
SSRN Electronic Journal
Article . 2022 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mg effect on the cryogenic temperature toughness of Al-Mg alloys

Authors: Kwangtae Son; Michael E. Kassner; Tae-Kyu Lee; Ji-Woon Lee;

Mg effect on the cryogenic temperature toughness of Al-Mg alloys

Abstract

In this study, the Mg and temperature effects on cryogenic impact toughness of Al-Mg alloys are investigated. Cryogenic Charpy impact tests are conducted for several Al-Mg alloys: AA5083 (=reference), Al-6 Mg, Al-8 Mg, and Al-8.5 Mg. The temperature range is – 196 ˚C to 100 ˚C. In all Al-Mg alloys, the impact toughness is improved at higher temperatures. The Al-6 Mg alloy exhibits the largest impact toughness, whereas the lowest impact toughness is observed in AA5083 over the temperature range. Beyond the Mg content of 6 wt%, the impact toughness of Al-Mg alloys decreases with increasing Mg. The planar anisotropy (Δr) is low in Al-Mg alloys of higher impact toughness. The largest amounts of coarse inclusions (>10 µm) are present in the AA5083, providing favorable cracking sites and thereby its poor impact toughness. The grain size and intergranular Mg segregation do not appear to influence the toughness of Al-Mg alloys. Weaker texture in the most ductile Al-6 Mg appears beneficial to gain more homogeneous deformation and lower Δr. Brass {110} 〈112〉, S {123} 〈634〉, and Copper {112} 〈111〉 textures evolve at the expense of a Goss {110} 〈001〉 weakening by increasing the Mg level. This texture evolution illustrates the toughness degradation of Al-Mg alloys of higher Mg levels.

Related Organizations
Keywords

Cryogenic properties, Al-Mg alloys, TA401-492, Impact toughness, Texture, Microstructure, Materials of engineering and construction. Mechanics of materials

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Top 10%
Top 10%
Top 10%
gold