Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ GFZ German Research ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Lithos
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Serpentinization of olivine in troctolites and olivine gabbros from the Hess Deep Rift

Authors: Nozaka, T.; Wintsch, R.; Meyer, R.;

Serpentinization of olivine in troctolites and olivine gabbros from the Hess Deep Rift

Abstract

Abstract To understand the similarity and diversity of serpentinization processes in different rock systems, gabbroic rocks recovered from IODP Site U1415 at the Hess Deep Rift were examined and compared with peridotites from the adjacent ODP Site 895. Textural observations, micro-Raman spectroscopic analyses and electron microprobe analyses indicated that most of the olivine-replacing serpentine in the gabbroic rocks lack the mixing with brucite, which is common in peridotites. At least three stages of serpentinization are observable in the gabbroic rocks; each generation is characterized by different submicroscopic mixtures or solid solutions of sheet silicates: 1) Mg-Fe2 + lizardite + ferri-lizardite + chlorite, 2) Mg-Fe2 + lizardite + ferri-lizardite, and 3) Mg-Fe2 + lizardite + ferri-lizardite + saponite. The first and third generations of serpentine and mixed minerals are relatively Fe-rich, whereas the second generation is Fe-poor and associated with abundant magnetite and pyrrhotite. The major difference between the alteration of gabbroic and peridotitic systems is probably best explained by the iron content and modal abundance of primary olivine and by rock-dominated fluid compositions with a high silica activity due to the alteration of plagioclase in gabbroic rocks. The mineralogical variations between the reported three generations of mixed sheet silicates in gabbroic rocks can be ascribed to variations of silica and/or oxygen activities in the associated fluids under decreasing temperature conditions. The abrupt increase of magnetite crystallization during serpentinization in gabbroic rocks could be caused by oxidation at a relatively high SiO2 activity without the olivine-serpentine-brucite buffering assemblage.

Country
Germany
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Average
Top 10%
Green