Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Life Sciencesarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Life Sciences
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Megakaryocytes in pulmonary diseases

Authors: Di-Yun, Huang; Guan-Ming, Wang; Zhuo-Ran, Ke; Yong, Zhou; Hui-Hui, Yang; Tian-Liang, Ma; Cha-Xiang, Guan;

Megakaryocytes in pulmonary diseases

Abstract

Megakaryocytes (MKs) are typical cellular components in the circulating blood flowing from the heart into the lungs. Physiologically, MKs function as an important regulator of platelet production and immunoregulation. However, dysfunction in MKs is considered a trigger in various diseases. It has been described that the lung is an important site of platelet biogenesis from extramedullary MKs, which may play an essential role in various pulmonary diseases. With detailed studies, there are different degrees of numerical changes of MKs in coronavirus disease 2019 (COVID-19), acute respiratory distress syndrome (ARDS), chronic obstructive pulmonary disease (COPD), lung cancer, pulmonary fibrosis (PF), and other pulmonary diseases. Also, MKs inhibit or promote the development of pulmonary diseases through various pathways. Here, we summarize the current knowledge of MKs in pulmonary diseases, highlighting the physiological functions and integrated molecular mechanisms. We aim to shine new light on not only the subsequent study of MKs but also the diagnosis and treatment of pulmonary diseases.

Related Organizations
Keywords

Blood Platelets, Respiratory Distress Syndrome, COVID-19, Humans, Lung, Megakaryocytes, Thrombopoiesis

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!