
We introduce the concept of n-OU and n-OO matrix sets, a collection of n mutually-orthogonal unitary and real orthogonal matrices under Hilbert-Schmidt inner product. We give a detailed characterization of order-three n-OO matrix sets under orthogonal equivalence. As an application in quantum information theory, we show that the minimum and maximum numbers of an unextendible maximally entangled bases within a real two-qutrit system are three and four, respectively. Further, we propose a new matrix decomposition approach, defining an n-OU (resp. n-OO) decomposition for a matrix as a linear combination of n matrices from an n-OU (resp. n-OO) matrix set. We show that any order-d matrix has a d-OU decomposition. As a contrast, we provide criteria for an order-three real matrix to possess an n-OO decomposition.
16 pages, no figure
Quantum Physics, FOS: Physical sciences, Mathematical Physics (math-ph), Quantum Physics (quant-ph), Mathematical Physics
Quantum Physics, FOS: Physical sciences, Mathematical Physics (math-ph), Quantum Physics (quant-ph), Mathematical Physics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
