
In the field of scientific computation, orthogonal iteration is an essential method for computing the invariant subspace corresponding to the largest r eigenvalues. In this paper, we construct a flow that connects the sequence of matrices generated by the orthogonal iteration. Such a flow is called an orthogonal flow. In addition, we show that the orthogonal iteration forms a time-one mapping of the orthogonal flow. A generalized orthogonal flow is constructed that has the same column space as the orthogonal flow. By using a suitable change of variables, the generalized orthogonal flow can be transformed into the solution of a Riccati differential equation (RDE). Conversely, an RDE can also be transformed into a flow that can be represented by a generalized orthogonal flow.
Riccati differential equation (RDE), Orthogonal iteration, Orthogonal flow, Invariant subspace
Riccati differential equation (RDE), Orthogonal iteration, Orthogonal flow, Invariant subspace
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
