
AbstractThe spread of a graph is defined to be the difference between the greatest eigenvalue and the least eigenvalue of the adjacency matrix of the graph. In this paper we determine the unique graph with minimum least eigenvalue among all connected bicyclic graphs of order n. Also, we determine the unique graph with maximum spread in this class for each n⩾28.
Numerical Analysis, Algebra and Number Theory, Spread, Discrete Mathematics and Combinatorics, Bicyclic graph, Geometry and Topology, Index, Least eigenvalue
Numerical Analysis, Algebra and Number Theory, Spread, Discrete Mathematics and Combinatorics, Bicyclic graph, Geometry and Topology, Index, Least eigenvalue
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 31 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
