<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
handle: 10481/78357
Although Deep Neural Networks (DNNs) have great generalization and prediction capabilities, their functioning does not allow a detailed explanation of their behavior. Opaque deep learning models are increasingly used to make important predictions in critical environments, and the danger is that they make and use predictions that cannot be justified or legitimized. Several eXplainable Artificial Intelligence (XAI) methods that separate explanations from machine learning models have emerged, but have shortcomings in faithfulness to the model actual functioning and robustness. As a result, there is a widespread agreement on the importance of endowing Deep Learning models with explanatory capabilities so that they can themselves provide an answer to why a particular prediction was made. First, we address the problem of the lack of universal criteria for XAI by formalizing what an explanation is. We also introduced a set of axioms and definitions to clarify XAI from a mathematical perspective. Finally, we present the Greybox XAI, a framework that composes a DNN and a transparent model thanks to the use of a symbolic Knowledge Base (KB). We extract a KB from the dataset and use it to train a transparent model (i.e., a logistic regression). An encoder-decoder architecture is trained on RGB images to produce an output similar to the KB used by the transparent model. Once the two models are trained independently, they are used compositionally to form an explainable predictive model. We show how this new architecture is accurate and explainable in several datasets.
Accepted in Knowledge-Based Systems Journal
FOS: Computer and information sciences, Computer Science - Machine Learning, Part-based Object Classification, Computer Science - Artificial Intelligence, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition, Deep learning, Machine Learning (cs.LG), Neural-symbolic learning and reasoning, Artificial Intelligence (cs.AI), Computer vision, Explainable artificial intelligence, Compositional models
FOS: Computer and information sciences, Computer Science - Machine Learning, Part-based Object Classification, Computer Science - Artificial Intelligence, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition, Deep learning, Machine Learning (cs.LG), Neural-symbolic learning and reasoning, Artificial Intelligence (cs.AI), Computer vision, Explainable artificial intelligence, Compositional models
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 24 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |