
Immunotherapies targeted against programmed death ligand 1 (PD-L1) and its receptor (PD-1) have improved survival in a subset of patients with advanced lung cancer. PD-L1 protein expression has emerged as a biomarker that predicts which patients are more likely to respond to immunotherapy. The understanding of PD-L1 as a biomarker is complicated by the history of use of different immunohistochemistry platforms with different PD-L1 antibodies, scoring systems, and positivity cut-offs for immunotherapy clinical trials with different anti-PD-L1 and anti-PD-1 drugs. Herein, we summarize the brief history of PD-L1 as a biomarker and describe the challenges remaining to harmonize PD-L1 detection and interpretation for best patient care.
Mice, Lung Neoplasms, Animals, Humans, Immunotherapy, Immunohistochemistry, B7-H1 Antigen, Biomarkers
Mice, Lung Neoplasms, Animals, Humans, Immunotherapy, Immunohistochemistry, B7-H1 Antigen, Biomarkers
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 402 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
