Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Thoracic ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Thoracic and Cardiovascular Surgery
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Thoracic and Cardiovascular Surgery
Article . 2011
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Thoracic and Cardiovascular Surgery
Article . 2011 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Metabolomics study of esophageal adenocarcinoma

Authors: Zane Hammoud; Jian Zhang; Lingyan Liu; Daniel Raftery; Siwei Wei; G. A. Nagana Gowda; Kenneth A. Kesler;

Metabolomics study of esophageal adenocarcinoma

Abstract

The objective of this study was to detect and evaluate reliable metabolite markers for screening and monitoring treatment of patients with esophageal adenocarcinoma (EAC) by studying metabolomics. The sensitivity and specificity of the study were evaluated not only for EAC but also for Barrett esophagus and high-grade dysplasia, which are widely regarded as precursors of EAC.Profiles of metabolites in blood serum were constructed using nuclear magnetic resonance spectroscopy and statistical analysis methods. The metabolite biomarkers discovered were selected to build a predictive model that was then used to test the classifications accuracies.Eight metabolites showed significant differences in their levels in patients with cancer and in the control group on the basis of Student t test. A partial least-squares discriminant analysis model built on these metabolites provided excellent classifications of patients with cancer and the control group, with the area under the receiver operating in a characteristic curve of >0.85 for both training and validation sample sets. Evaluated by the same model, the Barrett esophagus samples were of mixed classification, and the high-grade dysplasia samples were classified primarily as cancer samples. A pathway study indicated that altered energy metabolism and changes in the trochloroacetic acid cycle were the dominant factors in the biochemistry of EAC.1H nuclear magnetic resonance-based metabolite profiling analysis was shown to be an effective approach to differentiating between patients with EAC and healthy subjects. Good sensitivity and selectivity were shown by using the 8 metabolite markers discovered to predict the classification of samples from the healthy control group and the patients with the disease. Serum metabolic profiling may have potential for early diagnosis of EAC and may enhance our understanding of its mechanisms.

Keywords

Pulmonary and Respiratory Medicine, Male, Magnetic Resonance Spectroscopy, Esophageal Neoplasms, Adenocarcinoma, Barrett Esophagus, Biomarkers, Tumor, Humans, Metabolomics, Least-Squares Analysis, Early Detection of Cancer, Aged, Neoplasm Staging, Aged, 80 and over, Models, Statistical, Discriminant Analysis, Middle Aged, Case-Control Studies, Surgery, Female, Cardiology and Cardiovascular Medicine, Energy Metabolism, Precancerous Conditions

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    57
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
57
Top 10%
Top 10%
Top 10%
hybrid