<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 19896953
Measuring the vestibular evoked myogenic potential (VEMP) promises to become a routine method for assessing vestibular function, although the technique is not yet standardized. To overcome the problem that the VEMP amplitude depends not only on the inhibition triggered by the acoustic stimulation of the vestibular end organs in the inner ear, but also on the tone of the muscle from which the potential is recorded, the VEMP is often normalized by dividing through a measure of the electromyogram (EMG) activity. The underlying idea is that VEMP amplitude and EMG activity are proportional. But this would imply that the muscle tone is irrelevant for a successful VEMP recording, contradicting experimental evidence. Here, an analytical model is presented that allows to resolve the contradiction. The EMG is modeled as the sum of motor unit action potentials (MUAPs). A brief inhibition can be characterized by its equivalent rectangular duration (ERD), irrespective of the actual time course of the inhibition. The VEMP resembles a polarity-inverted MUAP under such circumstances. Its amplitude is proportional to both the ERD and the MUAP rate. The EMG activity, by contrast, is proportional to the square root of the MUAP rate. Thus, the normalized VEMP still depends on the muscle tone. To avoid confounding effects of the muscle tone, the standard deviation of the EMG could be considered. But the inhibition effect on the standard deviation is small so that the measuring time would have to be much longer than usual today.
VEMP, Models, Statistical, Time Factors, Sacculus, Electromyography, Muscles, Action Potentials, Sonomotor responses, Models, Theoretical, Vestibular Function Tests, Electromyogram, Vestibular function testing, EMG, Acoustic Stimulation, Ear, Inner, Evoked Potentials, Auditory, Reaction Time, Humans, Computer Simulation, Algorithms
VEMP, Models, Statistical, Time Factors, Sacculus, Electromyography, Muscles, Action Potentials, Sonomotor responses, Models, Theoretical, Vestibular Function Tests, Electromyogram, Vestibular function testing, EMG, Acoustic Stimulation, Ear, Inner, Evoked Potentials, Auditory, Reaction Time, Humans, Computer Simulation, Algorithms
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |