<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 16496302
Thymosin beta10 is a cytoplasm G-actin sequestering protein whose functions are largely unknown. To determine the direct effects of exogenous thymosin beta10 on angiogenic potentials as endothelial cell migration and capillary-like tube formation, human coronary artery endothelial cells (HCAECs) were incubated with increasing doses of thymosin beta10 (25-100 ng/ml). By using a modified Boyden chamber assay, thymosin beta10 inhibited cell migration in a dose- and time-dependent manner with the maximal effect being a 36% reduction at 100 ng/ml as compared to controls (P < 0.01). In addition, thymosin beta10 (100 ng/ml) significantly inhibited the capillary-like tube-formation of HCAECs on Matrigel, showing a 21% reduction of the total tube length as compared to negative controls (P < 0.01). Furthermore, by using real time PCR analysis, thymosin beta10 significantly decreased mRNA levels of vascular endothelial growth factor (VEGF), VEGF receptor-1 (VEGFR-1) and integrin alphaV after 24 h treatment in HCAECs. By contrast, thymosin beta4 significantly increased HCAEC migration. These results indicate that thymosin beta10, but not thymosin beta4, have direct inhibitive effects on endothelial migration and tube formation that might be mediated via downregulation of VEGF, VEGFR-1 and integrin alphaV in HCAECs. This study suggests a potential therapeutic application of thymosin beta10 to the diseases with excessive angiogenesis such as cancer.
Vascular Endothelial Growth Factor A, Vascular Endothelial Growth Factor Receptor-1, Neovascularization, Physiologic, Coronary Vessels, Models, Biological, Capillaries, Cell Line, Thymosin, Cell Movement, Humans, Endothelium, Vascular, Integrin alpha Chains
Vascular Endothelial Growth Factor A, Vascular Endothelial Growth Factor Receptor-1, Neovascularization, Physiologic, Coronary Vessels, Models, Biological, Capillaries, Cell Line, Thymosin, Cell Movement, Humans, Endothelium, Vascular, Integrin alpha Chains
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 29 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |