
pmid: 22664481
Dyneins are microtubule-based, ATP-driven motor proteins with six tandemly linked AAA+ domains, a long N-terminal tail and a coiled-coil stalk. Cytoplasmic dyneins function as individual homodimers and are responsible for minus-end-oriented transport along microtubules. Axonemal dyneins of flagella/cilia are anchored in arrays to peripheral microtubule doublets by their N-terminal tails, and generate sliding motions of adjacent microtubule doublets toward the plus end. The coiled-coil stalk is responsible for communication between the AAA+ domains and the microtubule binding domain. A number of isoforms of axonemal dyneins are integrated to generate bending motion. In this article I will review recent structural studies and address the question as to how dyneins generate force and cause bending in flagella/cilia.
Cytoplasm, Microscopy, Electron, Dyneins, Axonemal Dyneins, Crystallography, X-Ray
Cytoplasm, Microscopy, Electron, Dyneins, Axonemal Dyneins, Crystallography, X-Ray
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 27 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
