Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Physics a...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Physics and Chemistry of Solids
Article . 2008 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Na0.5K0.5NbO3–BiFeO3 lead-free piezoelectric ceramics

Authors: Ruzhong Zuo; Chun Ye; Xusheng Fang;

Na0.5K0.5NbO3–BiFeO3 lead-free piezoelectric ceramics

Abstract

Abstract Lead-free (Na 0.5 K 0.5 )NbO 3 -based piezoelectric ceramics were successfully fabricated by substituting with a small amount of BiFeO 3 (BF). Difficulty in sintering of pure NKN ceramics can be eased by adding a few molar percent of BF, and the crystalline structure is also changed, leading to a morphotropic phase boundary (MPB) between ferroelectric orthorhombic and rhombohedral phases. The MPB exists near the 1–2 mol% BF-substituted NKN compositions, exhibiting enhanced ferroelectric, piezoelectric, and electromechanical properties of P r =23.3 μC/cm 2 , d 33 =185 pC/N, and k p =46%, compared to an ordinarily sintered pure NKN ceramics. The MPB composition has a Curie temperature of ∼370 °C, comparable to that of some commercial PZT materials.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    104
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
104
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!