<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The spin-crossover phenomenon is a cooperative low-spin to high-spin transition which can be initiated using temperature or light-irradiation. We have used muon-spin relaxation (μSR) to study this effect in Fe(PM-PEA)2(NCS)2 and Fe(PMAzA)2(NCS)2. We find Gaussian or exponential muon relaxation in the high-spin phase for the two compounds, reflecting differences in their intermolecular interactions. For both compounds, the low-spin phase gives rise to root-exponential relaxation which we associate with a dilute distribution of fluctuating moments resulting from incomplete spin crossover.
Chemical compounds, [CHIM.MATE] Chemical Sciences/Material chemistry, Spin, High spin, Light irradiation
Chemical compounds, [CHIM.MATE] Chemical Sciences/Material chemistry, Spin, High spin, Light irradiation
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 15 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |