<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
AbstractSupernatants of cells infected with SARS-CoV-2, nasopharyngeal and sera samples containing SARS-CoV-2 were submitted to heat inactivation for various periods of time, ranging from 30 seconds to 60 minutes. Our results showed that SARS-CoV-2 could be inactivated in less than 30 minutes, 15 minutes and 3 minutes at 56°C, 65°C and 95°C respectively. These data could help laboratory workers to improve their protocols with handling of the virus in biosafety conditions.
[SDV] Life Sciences [q-bio], QH301-705.5, SARS-CoV-2, Short Communication, General Medicine, Biology (General), Covid-19, Heat, Inactivation
[SDV] Life Sciences [q-bio], QH301-705.5, SARS-CoV-2, Short Communication, General Medicine, Biology (General), Covid-19, Heat, Inactivation
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 154 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 0.1% |