
pmid: 22677174
Detrended fluctuation analysis (DFA) is a technique commonly used to assess and quantify the presence of long-range temporal correlations (LRTCs) in neurophysiological time series. Convergence of the method is asymptotic only and therefore its application assumes a constant scaling exponent. However, most neurophysiological data are likely to involve either spontaneous or experimentally induced scaling exponent changes. We present a novel extension of the DFA method that permits the characterisation of time-varying scaling exponents. The effectiveness of the methodology in recovering known changes in scaling exponents is demonstrated through its application to synthetic data. The dependence of the method on its free parameters is systematically explored. Finally, application of the methodology to neurophysiological data demonstrates that it provides experimenters with a way to identify previously un-recognised changes in the scaling exponent in the data. We suggest that this methodology will make it possible to go beyond a simple demonstration of the presence of scaling to an appreciation of how it may vary in response to either intrinsic changes or experimental perturbations.
Adult, Male, Brain, Humans, Electroencephalography, Signal Processing, Computer-Assisted, Time
Adult, Male, Brain, Humans, Electroencephalography, Signal Processing, Computer-Assisted, Time
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 24 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
