Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Neuroscie...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Neuroscience Methods
Article . 2011 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Automated EEG analysis: Characterizing the posterior dominant rhythm

Authors: Lodder, Shaun; van Putten, Michel Johannes Antonius Maria;

Automated EEG analysis: Characterizing the posterior dominant rhythm

Abstract

Automated interpretation of clinical EEG recordings will reduce subjectivity and visual bias from analysis and can reduce the time required for interpretation. As a first step in the design of a fully automated system, a method is presented to characterize the main properties of the posterior dominant rhythm (PDR), in particular its frequency, symmetry and reactivity. The presented method searches for dominant peaks in the EEG spectra during eyes-closed states with a three-component curve-fitting technique. From the fitted curve, the frequency and amplitude are estimated. The symmetry and the reactivity are found using the spectral power at the PDR frequencies. In addition, a certainty value is introduced as a measure of confidence for each estimate. The method was evaluated on a test set of 1215 clinical EEG recordings and compared to the PDR frequencies obtained from the visual analysis, as reported in the diagnostic reports. The calculated PDR frequencies were within 1.2Hz of the visual estimates in 92.5% of the cases. Even higher accuracies were reached when estimates with low certainty values were discarded. The presented method quantifies essential features of the PDR with a matched accuracy to visual inspection, making it a feasible contribution to the design of a fully automated interpretation system.

Country
Netherlands
Related Organizations
Keywords

Adult, Aged, 80 and over, Cerebral Cortex, Male, METIS-281883, Adolescent, Models, Neurological, Infant, Reproducibility of Results, Electroencephalography, Signal Processing, Computer-Assisted, Middle Aged, Alpha Rhythm, Young Adult, Child, Preschool, Humans, Female, Child, Aged

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    42
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
42
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!