Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Network a...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Network and Computer Applications
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

PETAL: A fully distributed location service for wireless ad hoc networks

Authors: Ilkhechi A.R.; Korpeoglu I.; Güdükbay U.; Ulusoy Ö.;

PETAL: A fully distributed location service for wireless ad hoc networks

Abstract

Abstract Location service is an essential prerequisite for mobile wireless ad hoc networks (MANETs) in which the underlying routing protocol leverages physical location information of sender and receiver nodes. Fulfillment of this requirement is challenging partly due to the mobility and unpredictability of nodes in MANETs. Moreover, scalability and location information availability under various circumstances are also substantial factors in designing an effective location service paradigm. By and large, utilizing centralized or distributed location servers responsible for storing the location information of all, or a subset of participant mobile devices, is a method employed in a significant portion of location service schemes. However, from the fairness point of view, it is more suitable to employ a location service scheme that treats participant nodes fairly, without mandating an unlucky subset to undertake the responsibility of serving as location server(s). In this work, we propose a scalable and fully decentralized location service scheme (PETAL) in which the burden of location update and inquiry tasks is almost evenly distributed among the nodes, resulting in an improvement in resilience against individual node failures. PETAL does not require hashing which results in more complexity, it is resilient against swarm mobility pattern, it requires minimal periodic location update messages when nodes do not move, and finally it does not require too many parameter configurations on all nodes. Our simulation results reveal that PETAL performs efficiently, particularly in environments densely populated by wireless devices.

Related Organizations
Keywords

Ad hoc networks, Location information, Location, Complex networks, Mobile ad hoc networks, Swarm mobilities, Mobile ad hoc network, Mobile telecommunication systems, Location service, Location services, Distributed location services, Network routing, Wireless ad hoc networks, Sender and receivers, Swarm mobility, Geographical routing, Mobile wireless ad hoc networks, Effective location

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Average
Green
bronze